65,651 research outputs found

    Diode laser modification of ceramic material surface properties for improved wettability and adhesion

    Get PDF
    To date, very little work has been published with regard specifically to the use of lasers for modifying the surface properties of materials in order to improve their wettability and adhesion characteristics. Using a 60 W high power diode laser (HPDL) the effects of HPDL radiation on the wettability and adhesion characteristics of certain ceramic materials have been determined. It was found that laser treatment of the materials surfaces’ modified the surface energy and accordingly, wetting experiments, by the sessile drop technique using a variety of test liquids, revealed that laser treatment of the range of ceramic materials surfaces resulted in a decrease in the contact angles. The work shows clearly that laser radiation can be used to alter the wetting and adhesion characteristics of a number of ceramic materials by means of changing the surface energy

    Carbon steel wettability characteristics enhancement for improved enamelling using a 1.2 kW high power diode laser

    Get PDF
    High-power diode laser (HPDL) surface treatment of a common engineering carbon steel(EN8) was found to effect significant changes to the wettability characteristics of the metal. These modifications have been investigated in terms of the changes in the surface roughness of the steel, the presence of any surface melting, the polar component of the steel surface energy and the relative surface oxygen content of the steel. The morphological and wetting characteristics of the mild steel and the enamel were determined using optical microscopy, scanning electron microscopy (SEM), X-ray photoemission spectroscopy (XPS), energy-dispersive X-ray (EDX) analysis and wetting experiments by the sessile drop technique. This work has shown that HPDL radiation can be used to alter the wetting characteristics of carbon steel so as to facilitate improved enamelling

    Constrained power plants unit loading optimization algorithm

    Get PDF
    Power plants unit loading optimization problem is of practical importance in the power industry. It generally involves minimizing the total operating cost subject to satisfy a series of constraints. Minimizing fuel consumption while achieve output demand and maintain emissions within the environmental license limits is a major objective for the loading optimization. This paper presents a Particle Swarm Optimization (PSO) based approach for economically dispatching generation load among different generators based on the units' performance. Constraints have been handled by a proposed modified PSO algorithm which adopting preserving feasibility and repairing infeasibility strategies. A simulation of an Australia power plant implementing the modified algorithm is reported. The result reveals the capability, effectiveness and efficiency of using evolutionary algorithms such as PSO in solving significant industrial problems in the power industry

    Late Paleoproterozoic sedimentary rock-hosted stratiform copper deposits in South China: their possible link to the supercontinent cycle

    Get PDF
    published_or_final_versio

    High power diode laser modification of the wettability characteristics of an Al2O3/SiO2 based oxide compound for improved enamelling

    Get PDF
    High power diode laser (HPDL) surface melting of a thin layer of an amalgamated Al2O3/SiO2 oxide compound (AOC) resulted in significant changes in the wettability characteristics of the material. This behaviour was identified as being primarily due to: (i) the polar component of the AOC surface energy increasing after laser melting from 2.0 to 16.2 mJm-2, (ii) the surface roughness of the AOC decreasing from an Ra value of 25.9 to 6.3 ÎĽm after laser melting and (iii) the relative surface oxygen content of the AOC increasing by 36% after laser melting. HPDL melting was consequently identified as affecting a decrease in the enamel contact angle from 1180 prior to laser melting to 330 after laser melting; thus allowing the vitreous enamel to wet the AOC surface. The effective melt depth for such modifications was measured as being from 50 to 125 ÎĽm. The morphological, microstructural and wetting characteristics of the AOC were determined using optical microscopy, scanning electron microscopy, energy disperse X-ray analysis, X-ray diffraction techniques and wetting experiments by the sessile drop technique. The work has shown that laser radiation can be used to alter the wetting characteristics of the AOC only when surface melting occurs

    Wettability characteristics of carbon steel modified with CO2, Nd:YAG, Excimer and high power diode lasers

    Get PDF
    Interaction of CO2, Nd:YAG, excimer and high power diode laser (HPDL) radiation with the surface of a common mild steel (EN8) was found to effect changes in the wettability characteristics of the steel, namely changes in the measured contact angle. These modifications are related to changes in the surface roughness, changes in the surface oxygen content and changes in the surface energy of the mild steel. The wettability characteristics of the selected mild steel could be controlled and/or modified by laser surface treatment. A correlation between the change of the wetting properties of the mild steel and the laser wavelength was found

    Numerical and physical simulation of rapid microstructural evolution of gas atomised Ni superalloy powders

    Get PDF
    The rapid microstructural evolution of gas atomised Ni superalloy powder compacts over timescales of a few seconds was studied using a Gleeble 3500 thermomechanical simulator, finite element based numerical model and electron microscopy. The study found that the microstructural changes were governed by the characteristic temperatures of the alloy. At a temperature below the Îł' solvus, the powders maintained dendritic structures. Above the Îł' solvus temperature but in the solid-state, rapid grain spheroidisation and coarsening occurred, although the fine-scale microstructures were largely retained. Once the incipient melting temperature of the alloy was exceeded, microstructural change was rapid, and when the temperature was increased into the solid + liquid state, the powder compact partially melted and then re-solidified with no trace of the original structures, despite the fast timescales. The study reveals the relationship between short, severe thermal excursions and microstructural evolution in powder processed components, and gives guidance on the upper limit of temperature and time for powder-based processes if desirable fine-scale features of powders are to be preserved
    • …
    corecore